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Abstract. The dynamics of wavepackets in a relativistic Dirac oscillator (DO) is compared with
that of the Jaynes–Cummings model. The strong spin–orbit coupling of the DO produces the
entanglement of the spin with the orbital motion similar to that observed in the model of quantum
optics. The resulting collapses and revivals of the spin extend to a relativistic theory our previous
findings on a nonrelativistic oscillator where they were known asspin–orbit pendulum. The Foldy–
Wouthuysen transformation can be performed exactly for the DO. It produces the well known
smoothing effect over the Compton wavelength. Thus, after this transformation, zitterbewegung
disappears just as the components of the WP associated to negative energy states.

1. Introduction

This paper mixes together different popular models of quantum theory which have been
developed separately and for different purposes and presents the Dirac oscillator as a relativistic
version of the Jaynes–Cummings (JC) model [1] with, in addition to the regular properties
of this model, some interesting new ones related to the relativistic description. The Dirac
oscillator, (DO) first introduced by Itoet al [2], was later shown by Cook [3] to present unusual
accidental degeneracies in its spectrum which were discussed from a supersymmetric viewpoint
by Ui et al [4]. It was refreshed later by Moshinsky and Szczepaniak [5] and its symmetry Lie
algebra was made explicit by Quesne and Moshinsky [6]. Moreno and Zentella [7] also showed
that an exact Foldy–Wouthuysen (FW) transformation could be performed. More recently
Nogami and Toyama [8] and Toyamaet al [9] have studied the behaviour of wavepackets
(WP) of the DO in the Dirac representation and in the FW representation in 1 + 1 dimensions.
The aim of these authors was to study WP which could possibly be coherent. This reduction
of the dimension was brought about as an attempt to remove spin effects and to concentrate
on the relativistic effects.

Our aim is to extend the work of [8,9], to consider the full 3 + 1 dimensions and show that
an interesting new connection with the JC model can be made, as we explain shortly.

The degeneracies of the eigenvalues of the DO are due to a spin–orbit potential which is
unusually large. In previous papers [10–12] we have analysed the time-dependent behaviour of
WP in a nonrelativistic harmonic oscillator potential with a constant spin–orbit potential. We
have shown that the behaviour of the spin shares a strong analogy with the observations made
on the population of a two-level atom in a cavity where it can make a two-photon exchange [14].
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For the relativistic DO the mechanism of collapses and revivals well known in the JC
model is then expected to take place with some differences (see [15] for a general review of the
JC model and for a full list of references). Since the energy spectrum is far from being linear
the exact periodicity of the nonrelativistic oscillator is lost and the system evolves more on
the lines of the regular JC model, i.e. without exact recurrences. In addition, the spin motion
should also exhibit the famous zitterbewegung; this trembling motion should also be seen in
the motion of the density of the wave as shown in [8, 9]. This effect should disappear in the
FW representation.

The presence of components with negative energies in a relativistic WP solution of the
Dirac equation with a potential leads to interesting new effects which cannot be interpreted
satisfactorily using one-particle theory. In the scattering of a WP by a potential barrier step
it is well known that there is a reflected current larger than the incident one and that there is
a transmitted current forV0 > E +mc2 with a negative sign. This effect is well explained in
the framework of hole theory (a full treatment of the Klein paradox is given in [17]). Studying
the behaviour of a WP of the DO in a highly relativistic regime, we have found that the WP
contains two pieces which circulate in the opposite sense and which are made with positive
and negative energy states separately. When these components superpose, the magnitude of
the WP is obviously larger than the part with positive energy states. The counter-rotating part
is not present in the classical description, the same as the negative current which propagates
under the barrier step.

2. Summary of results on the DO

In the following we will use the notations of [5, 16]. The time-dependent Dirac equation is
written as

ih̄
∂9

∂t
= HD9 = c[α · (p− imωrβ) +mcβ]9. (1)

The components91 and92 of a spinor of energyE

9 =
(
91

92

)
(2)

obey the equations

(E2 −m2c4)91 =
[
c2(p2 +m2ω2r2)− 3h̄ωmc2 − 4mc2ω

h̄
(L · S)

]
91 (3a)

(E2 −m2c4)92 =
[
c2(p2 +m2ω2r2) + 3h̄ωmc2 +

4mc2ω

h̄
(L · S)

]
92. (3b)

These components are thus the eigenstates of a spherical HO with a spin–orbit coupling
term, respectively±2ω/h̄. These large coupling strengths are responsible for the unusual
degeneracies of the levels. The spectrum depends on a single parameterr defined as

r = h̄ω

mc2
. (4)

Spectrum and degeneracies and the building of91 are well described in [5, 6]. For an
eigenstate of energyEnlj , 91 can also be labelled byn, the usual total number of quantas of
the 3D oscillator, by the orbital and total angular momentuml andj and by the componentm
of jz. In terms ofr

Enlj = mc2
√
rA + 1 (5)
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whereA is defined as

A = 2(n− j) + 1 if l = j − 1
2 (6a)

A = 2(n + j) + 3 if l = j + 1
2 . (6b)

Thus the states which obey (6a) have an infinite degeneracy. Among them those withn = l have
the lowest valueE = mc2. The states which obey (6b) have, in contrast, a finite degeneracy.

For the eigenvalues of equation (3b) one should take care of the opposite sign of the spin–
orbit potential and of the different sign of the constant term. The eigenvalue is written in terms
of n′l′ andj ′ as

En′l′j ′ = mc2
√
rA′ + 1 (7)

with A′ given by

A′ = 2(n′ − j ′) + 3 if l′ = j ′ − 1
2 (8a)

A′ = 2(n′ + j ′) + 5 if l′ = j ′ + 1
2 . (8b)

The need to makeE andE′ equal with differentn andn′, l andl′ is fulfilled if one notices
that92 is connected to91 by

|92〉 = −i
mc2

E +mc2

√
2r(σ · a)|91〉. (9)

The operator which couples91 and92 above is expressed as the scalar product of the spin
operatorσ with a vector annihilation operatora defined by

a = 1√
2

[
r√
h̄/mω

+ i
p√
h̄mω

]
. (10)

In order to satisfy equations (3a) and (9) it is necessary that

j ′ = j n′ = n− 1 (11a)

l′ = l + 1 if l = j − 1
2 (11b)

l′ = l − 1 if l = j + 1
2 . (11c)

These conditions imply that for the ground state of the equation satisfied by91 one has92 = 0.
This corresponds to the fact that the DO is a supersymmetric potential for which91 and92

have the same spectrum apart from the absence in the spectrum of92 of the ground state
eigenvalue of91.

Beside equation (9) we have

|91〉 = i
mc2

E −mc2

√
2r(σ · a†)|92〉. (12)

Using|91〉 = |nljm〉 and inserting (9) into (12) one obtains

E2 −m2c4 = (mc2)22r|〈n′l′jm|(σ · a)|nljm〉|2 (13)

where|n′l′jm〉 is a normalized harmonic oscillator state which has its quantum numbers defined
by (11). From (9) and (13) and using the phase conventions as in the reference book [16] one
obtains

〈n′l′jm|92〉 = sgn

√
E −mc2

E +mc2
. (14)

The complex phase called sgn is defined by

sgn = −i if l′ = l + 1= j + 1
2 (15a)

sgn = +i if l′ = l − 1= j − 1
2 . (15b)
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A normalized spinor with positive energyE = +Ep can now be expressed as

9+(t) =
[ √

Ep+mc2

2Ep
|nljm〉

sgn
√
Ep−mc2

2Ep
|n′l′jm〉

]
exp

(−iEpt

h̄

)
. (16)

In a similar manner a spinor with negative energyE = −Ep is written as

9−(t) =
[ √

Ep−mc2

2Ep
|nljm〉

− sgn
√
Ep+mc2

2Ep
|n′l′jm〉

]
exp

(
iEpt

h̄

)
. (17)

It is interesting to note that the relative weights of the large and small components are formally
expressed in terms ofEp exactly in the same manner as in the 1 + 1 model of [8, 9]. The
energies are, however, given by equation (5) with conditions (6a) and (6b).

3. Study of a circular wavepacket. Theory

3.1. Definition of the WP

In the following we will study the time evolution of a circular WP of a special kind in the DO.
For t = 0 we assume that the WP has a Gaussian shape with an average positionr0 and an
average momentump0 such that the WP moves upon a circular trajectory if it is left free of
spin and in a nonrelativistic HO. The WP is assumed to initially be an eigenstate of spin with
an arbitrary direction defined by two complex numbers,α andβ. Let the normalized WP be

9(r, 0) = 1

(2π)3/4σ 3/2
exp

[
− (r − r0)

2

2σ 2
+ i
p0 · r
h̄

]
α

β

0
0

 . (18)

It is simpler to choose the axis of coordinates such that

r0 = xx0. (19)

The centroidx0 is expressed in units of the natural width of the HO and of a parameter called
N by

x0 =
√
Nσ =

√
N
√
h̄/(mω) (20)

while the average momentum is taken as

p0 = yp0 = yh̄
√
N/σ. (21)

In (19) and (21)x andy denote the appropriate unit vectors.
The average angular momentum is then

〈Lz〉 = x0p0 = Nh̄. (22)

The partial wave expansion of the WP involves only waves for whichm = l and for which the
total number of quantas of the oscillator is alsol. It is given by

|9(0)〉 =
∞∑
l=0

λl|n = llml = l〉


α

β

0
0

 . (23)

The weightsλl are given by

λl = (−1)l exp(−N/2)N
l/2

√
l!
. (24)
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In other words (18) is a coherent state of the HO. We have studied in [10–12] its time
evolution assuming that the Hamiltonian is a nonrelativistic HO with a constant spin–orbit
potential which depends upon a parameterκ as

Vs.o. = κ(L · σ). (25)

Associated with the DO there is a nonrelativistic Hamiltonian that we will define as the operator
in the right side of (3a) divided by 2mc2 and which thus presents the same degeneracies as
those given by equations (6a) and (6b).

3.2. Partial waves with spin up

Let us isolate in the WP (18) a partial wavel with spin up. A partial wave has two partners with
different total angular momentum calledj+ = l + 1

2 andj− = l − 1
2 with respective energies

E+ andE−. E+ is given for all thel present in (23) by

E+ = mc2 in the relativistic theory (26a)

E+ = 0 in the nonrelativistic one. (26b)

A partial wave with spin up hasj = j+ and is an eigenstate of the Hamiltonian with energy
E+. It leads trivially to the phase exp(−iE+t) = exp(−iω0t) in case (26a) with ω0 = mc2/h̄.

3.3. Partial waves with spin down

This component is coupled to the two partners and we therefore needE− which is given by

E− = mc2
√

2r(2l + 1) + 1 in the relativistic theory (27a)

E− = mc2r(2l + 1) = h̄ω(2l + 1) in the nonrelativistic one. (27b)

(i) Let us consider first a two-component spinor in the nonrelativistic theory:(
0
|lll〉

)
= 1√

2l + 1
|lj+mj = j+ − 1

2〉 +
√
(2l)√

2l + 1
|lj−mj = j−〉. (28)

After a timet the spinor is given by(
0
|lll〉

)
t

= 1

2l + 1

(√
2l(e−iE+t/h̄ − e−iE−t/h̄)|llml = l − 1〉
(e−iE+t/h̄ + 2le−iE−t/h̄)|llml = l〉

)
. (29)

One sees that the average components ofσ are given by

〈σx〉 = 0 〈σy〉 = 0 (30a)

〈σz〉 = −1 +
16l

(2l + 1)2
sin2[(2l + 1)ωt ]. (30b)

At times

t = π/[2ω(2l + 1)] + nπ (31)

the average of spin reaches its minimum and the spin has a maximum of entanglement with the
orbital motion. The most important component in the spinor (29) is for large enough values
of l the spinor(

0
2l

2l+1e−iω(2l+1)t |lll〉
)
. (32)

The time-dependent part of the phase exp(−i2lωt) in this spinor can be incorporated
with the angular phase exp(ilφ) of the spherical harmonic. Therefore, the main effect for this
partial wave with spin down is that it rotates aroundOz with angular velocity 2ω. Thus we
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have shown that a partial wave with arbitraryα andβ contains a part which is at rest and a
second part which rotates aroundOz with angular velocity 2ω. This is a particular case of our
previous findings [12]: in the general case with arbitraryκ the two waves with opposite spin
move aroundOz, the spin-up part with angular velocityω − ωls and the spin-down one with
ω + ωls . In the DO we have simplyωls = ω.

(ii) The corresponding relativistic spinor is written simply by adding two components
which are initially zero:

0
|lll〉

0
0

 = 1√
2l + 1

( |lj+j+ − 1〉
0
0

)
+

√
2l

2l + 1

( |lj−j−〉
0
0

)
. (33)

The first spinor gets the phase exp(−iω0t) while the second spinor requires an expansion
in terms of spinors with positive and negative energy as analysed in [8, 9]. The coupling is
expressed by using equations (16) and (17) in terms of a coefficient calledal defined as

al =
√
E2− −m2c4

E−
=
√

2r(2l + 1)

1 + 2r(2l + 1)
=
√

1−
(
ω0

ωl

)2

(34)

where we have definedωl by

ωl = ω0

√
1 + 2r(2l + 1). (35)

The second term of (33) is written at timet as( |lj−j−〉
0
0

)
t

=
(
(cosωlt − i ω0

ωl
sinωlt)|lj−j−〉

sgnal sinωlt |l − 1j−j−〉
)

(36)

=


− 1√

2l+1
(cosωlt − i ω0

ωl
sinωlt)|lll − 1〉√

2l
2l+1(cosωlt − i ω0

ωl
sinωlt)|lll〉

sgnal sinωlt |l − 1l − 1l − 1〉
0

 . (37)

Finally, reassembling the four parts of the spinor (33) one writes it as
0
|lll〉

0
0


t

= 1

2l + 1


[
√

2l[e−iω0t − (cosωlt − i ω0
ωl

sinωlt)]|lll − 1〉
[e−iω0t + 2l(cosωlt − i ω0

ωl
sinωlt)]|lll〉√

2l(2l + 1) sgnal sinωlt |l − 1l − 1l − 1〉
0

 . (38)

Comparing (38) with (29) we see that time evolution creates a small component in the relativistic
spinor which is initially zero while the effect in the large components is through the following
replacement:

e−iE−t/h̄→
(

cosωlt − i
ω0

ωl
sinωlt

)
(39)

= 1

2
e−iωl t

[
1 +

ω0

ωl

]
+

1

2
eiωl t

[
1− ω0

ωl

]
. (40)

With similar arguments to those which led us to equation (32) we obtain in the relativistic
case two waves which rotate in the opposite sense with angular velocity 2ω. To reach this
conclusion we must linearizeωl by writing

ωl = ω0[1 + r(2l + 1)] = ω0 + ω(2l + 1). (41)
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The part with positive frequency is now weighted by1
2(1 +ω0/ωl) and the new part which

rotates in the opposite sense by1
2(1− ω0/ωl). The third component of the spinor (38) also

contains two waves with an opposite sense of rotation and amplitudeal/2. Thus, a relativistic
WP with α = β = 1/

√
2 dissociates into three parts instead of two as in the nonrelativistic

evolution: there is a part with spin up which does not essentially move, while the part with
spin down is divided into two waves moving in opposite directions.

3.4. Spin averages

We give below the expectation values of the operatorσ for the circular WP (23) assuming
α = β = 1/

√
2:

〈σx〉 =
∑
l

|λl|2 1

2l + 1

[
1 + l

(
1 +

ω0

ωl

)
cos(ωl − ω0)t + l

(
1− ω0

ωl

)
cos(ωl + ω0)t

]
(42)

〈σy〉 =
∑
l

|λl|2 l

2l + 1

[(
1 +

ω0

ωl

)
sin(ωl − ω0)t +

(
1− ω0

ωl

)
sin(ωl + ω0)t

]
(43)

〈σz〉 =
∑
l

|λl|2
{

1

2
+

4l − 1

2(2l + 1)2
− ω

2
0

ω2
l

2l2

(2l + 1)2

− 2l

(2l + 1)2

[(
1 +

ω0

ωl

)
cos(ωl − ω0)t +

(
1− ω0

ωl

)
cos(ωl + ω0)t

+l

(
1− ω

2
0

ω2
l

)
cos 2ωlt

]}
. (44)

These formulae extend to the relativistic DO those already discussed in [10]. Because of the
conservation of the total angular momentum there is no interference between the variousl for
the spin averages. Each partial wave depends on time because the energies of the spin–orbit
partners are different. In the nonrelativistic case the time factors depend only on the differences
ωl − ω0 = (2l + 1)ω. Therefore, all these averages have period 2π/ω. After a time called the
collapse timeτc = π/(2

√
2N) all the phases coming from all the partial waves are equally

distributed and assuming high values ofN all these averages are zero, i.e. there is a collapse of
the spin! The average orbital angular momentum correspondingly obtains an increase in order
to preserve the average total angular momentum. This exchange was calledthe spin–orbit
pendulumsince it occurs exactly periodically. In addition, we have also shown that for a time
equal toπ/ω the average spin is for highN opposite to its initial value with the same coherence
time around this revival. This behaviour makes the spin–orbit pendulum analogous to the JC
model with the frequencies(2l + 1)ω playing the role of the Rabi frequencies.

For the DO we essentially obtain the same behaviour. However, the periodicity is totally
broken for high and even for low values ofr because of the terms involvingω0 + ωl . This
combination introduces in the spin motion high frequencies affecting each component with a
different weight. The effect of this modulation is the well known zitterbewegung that can be
seen in the DO on the observable of spin. This effect generally occurs as an interference term
between positive and negative energy states. In our problem these energies arel dependent, a
situation which is not present for a free particle. Therefore, it will involve many frequencies
but the smallest of them is certainly 2ω0 = 2mc2/h̄. Higher frequencies are also there as
exhibited in figure 1. Note that (42) and (43) contain similar terms and similar weights.〈σx〉
and〈σy〉 will then present a similar time behaviour. TheOz component is, however, different
since there is in (44) an extra term with frequency 2ωl . This term will produce two effects:
an extra high-frequency modulation and a partial revival at a time about half of the revival of
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Figure 1. Time evolution of the average values of spin components forN = 20, r = 0.001 in
the Dirac representation. Note that values of〈σz〉 are five times enlarged. The nonrelativistic
case (dashed curve) is included in the upper curve for comparison (in this case the period is
T = 2π/r = 6283.185).

the spin. This new revival of a purely relativistic origin concerns only thez component which
will oscillate rapidly while the other components are zero.

4. Circular WP. Numerical calculations

In order to exhibit the various effects discussed in the preceding section we have chosen the
valueN = 20 which provides a WP well concentrated in configuration space with an interesting
spread of its partial waves. This value was also used thoroughly in our previous papers on the
nonrelativistic oscillator [10–12]. For simplicity we use the units ¯h = m = c = 1. Therefore,
our time units used in presented figures are proportional toω−1 = r−1. For the nonrelativistic
case the period of the motion is thenT = 2π/ω = 2π/r.

4.1. Spin averages in the Dirac representation

In figure 1 of [12] we have shown the 3D motion of the average spin vector and of the average
orbital angular momentum vector for a nonrelativistic oscillator during an interval of time
equal toTls/2 (Tls = 2π/κ). The collapse of the spin is well exhibited in this figure by the fact
that its average is zero during most of the time and its revival is seen in the opposite direction
for t = Tls/2. After twice that time the spin has regained its initial value and direction. During
the interval where the spin collapses or revives it describes a curve in space. Qualitatively, the
same features occur for the relativistic DO. However, the curve described by the spin vector is
very sensitively dependent upon the use of relativistic energies in such a manner that the spin
is not reversed at its first revival.

For the very low values ofr, such asr = 0.001 in figure 1, we are very near the
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Figure 2. The details of the first revival aroundt = T/2= π/ω for three small values ofr.

nonrelativistic limit. One then observes a collapse of each component of the spin during
an interval of timeτc and a revival of the spin which has lost its periodicity because of the use
of the relativistic energies. The first revival of〈σx〉 at timet = π/ω indeed shows the spin
with the same direction as the initial one. Figure 2 shows the details of the first revival for two
additional values ofr smaller than 0.001. For these smaller values, the spin gets its maximum
in the direction opposite to the initial one while forr = 0.001, this direction has changed
because of the simple transformation of a local maximum into an absolute maximum.

The relativistic effects produce a slow decrease in the amplitude of the revivals. There is
already a quite sensible difference in the behaviour of〈σz〉with time. This component fluctuates
much more rapidly because it is richer in frequencies than the other two. It also exhibits a
small increase at a time about half of the recurrence time due to these higher components.

Each of these effects becomes more pronounced when the parameterr is given higher
values. Figure 3 is forr = 0.025, figure 4 forr = 0.5. The components of the spin in thexOy
plane oscillate much longer around each recurrence with a small period and the amplitudes of
these recurrences decay. Again, the behaviour of〈σz〉 is the most spectacular. One sees that on
the average it does not exactly reach zero. The zitterbewegung is thus exhibited quite clearly
in these time behaviours and the component〈σz〉 qualitatively differs from the other two.

4.2. Probability densities

We have not attempted to detect the zitterbewegung in the change of the probability density
with time. Indeed, since this effect involves high frequencies it is difficult to see in three
dimensions. The reader is invited to read [8,9] where it has been shown in 1 + 1 dimensions.
The counter-rotating wave that was discussed in section 3.3 is however easily shown for high
enough values ofr. In figure 5 the total probability density of the WP at the particular average
radius (19) is represented in spherical coordinates and for a few instants of time. What is shown
was entirely explained in section 3.3 for each partial wave. A large part of the wave stays at the
initial position, essentially the part with spin up. The wave is split into two waves which move
in opposite directions and with the same angular velocity. They are centred around a circle with
θ = π/2. Two analyses of the WP have then been made and are represented in figures 6 and 7
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Figure 3. The same as in figure 1 but forr = 0.025.

Figure 4. The same as in figure 1 but forr = 0.5.

for t = 10. There one finds that both of these moving parts are mainly localized in the second
and third components of the spinor (|c2〉 and|c3〉, respectively) and that the counter-rotating
part is almost entirely composed of negative energies. Here we are facing an effect totally
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Figure 5. WP motion forN = 20, r = 0.5 in the Dirac representation. The total probability
density|9|2 on the surface of the sphere with radiusr = x0 is shown. Note that motion of this
circular WP remains close to the equator (narrowθ range).

absent from a nonrelativistic behaviour and not understood in one-particle theory. For lower
values ofr this part of the wave is hardly visible (not shown).

4.3. FW representation

The FW transformation [13] is well known to transform operators of the Dirac equation
such as position, velocity, angular momentum and spin into new operators which permit an
interpretation of the relativistic theory nearer to the classical one. The crucial point, well
underlined in the original paper, is that the nonlocal character of this transformation produces
a spread of the particle over the neighbourhood of dimension of the Compton wavelength.
The velocity of the particle has convenient values and is not equal to the velocity of light.
Moreover, components of negative energies are erased and the zitterbewegung disappears.

For a particle in an external electromagnetic field, the transformation requires an infinite
sequence of transformations and the Hamiltonian becomes an infinite series of powers of 1/m.

As derived in [7] a FW transformation can be performed exactly on the DO. The result
obtained is very simple and makes calculations extremely easy. The small components92

of the Dirac representation disappear and equation (3a) results as the only equation valid for
91. The spinor has still its eigenvalues given by (5) and the equations (28) and (29) should
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Figure 6. Contributions from positive and negative energy states forN = 20, r = 0.5 t = 10 in
the Dirac representation.

Figure 7. Contributions from all components of the bispinor9 (denoted asc1, c2, c3 andc4) for
N = 20,r = 0.5 t = 10 in the Dirac representation. Note the different vertical scales and the fact
that the contribution from the fourth component is zero.

be used for the spin averages. In other words, the only relativistic effects are the use of these
energies. The effects introduced by negative energies disappear. This fact was already well
discussed in the 1 + 1 dimension model [9]. A comparison of the calculation in the Dirac
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Figure 8. Time evolution of average values of spin components forN = 20,r = 0.001 in the FW
representation. Note that values of〈σz〉 are ten times enlarged.

and FW representation enables us to see the manifestations of the zitterbewegung exactly.
Figures 8 and 9 present in FW representation the same cases as figures 1 and 4 in Dirac
representation, respectively. Comparing the figures one sees that the rapid fluctuations have
indeed been washed out. In the FW representation the behaviour of each component of the
spin is now the same. Thus it is the use of the relativistic energies that now produce the rapid
but regular oscillations of the spin as well as the spread and decay of its revival. It is natural
in this context to expect the disappearance of the component rotating in the wrong sense. The
WP are compared in figure 10 at timet = 10. Only the part which rotates in the positive sense
is left in the FW representation.

4.4. Other spin directions

The formulae of sections 3.2 and 3.3 can be combined conveniently to provide the behaviour of
a WP pointing initially in an arbitrary direction. Such a study does not lead to a new dynamics.
One can in this way simply put more weight on the part with spin down which is the most
variable part. For example, one can almost totally destroy the part not moving at the origin.
Our choice of the initial direction has been made to see the components with spin up and down
with the same magnitude. None of the other cases deserves a particular presentation.

5. Summary and conclusions

We have shown a new analogy between the relativistic DO and the JC model of quantum optics.
The time evolution of the average spin associated to a WP in the DO is quite analogous to the
time evolution of the occupation numbers of each of a two-level atom which interacts with an
electromagnetic cavity. In the latter case the atom is entangled with the cavity while in the
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Figure 9. The same as in figure 8 but forr = 0.5.

former case the spin of the particle is entangled with its orbital angular momentum according
to rules fixed by the Dirac equation. In the same way in both models the mechanism of
collapses and revivals takes place. The collapse of the spin is compensated by a corresponding
increase of the orbital average angular momentum. This balance occurs periodically in the
nonrelativistic case [10–12]. We have proposed the name of spin–orbit pendulum for this
effect. In the relativistic case the periodicity is destroyed. There is then a rich behaviour of the
spin components which are submitted to zitterbewegung. For a WP initially thrown with its
velocity in thexOy plane thez component of the spin contains more frequencies and therefore
exhibits the most rapid oscillations.

Related to the relativistic description we have found the presence of a counter-rotating
wave built mainly from negative energy states. This component is particularly large for the
geometry of the WP we have used in our paper. Its presence is reminiscent of the transmitted
propagating current observed under the barrier in the Klein paradox which is interpreted as
a positron in hole theory [17]. To our knowledge it is the first time that such a nonclassical
effect is observed in the case of a WP in a potential. We have been able to observe a similar
(however weaker) effect for a WP in 1+1 dimension. It is an open question whether this effect
also exists for a WP in a Coulomb field. The smallness of the spin–orbit potential in this case
may make observation difficult.

The FW transformation, performed exactly for the DO, produces its well known smoothing
effect over the size of the Compton wavelength. The higher frequencies associated with
zitterbewegung disappear and the counter-rotating component found in the Dirac representation
is killed. Our conclusions totally confirm those of [8, 9]. The coherence of the WP is
also lost because of the nonlinear relativistic energies. Therefore, coherent states of the
harmonic oscillator generally spread. The counter-rotating wave also disappears completely
with negative energies and the dynamics can be better interpreted with the ordinary one-particle
interpretation. This dynamics then resembles the well known dynamics of the population
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Figure 10. The same as in figure 5 but for the FW representation.

inversion of the JC model with Eberly revivals of Rabi oscillations [14]. There is an attempt by
Toyama and Nogami to provide coherent relativistic WP of DO by using the inverse scattering
method [18]. If these WP could also be defined for a 3 + 1 oscillator we would then probably
have a relativistic spin–orbit pendulum with a dynamics similar to the nonrelativistic one. To
our knowledge these WP have not yet been constructed in the case where we take all dimensions
into account.
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